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Creep and monotonic stress-strain behaviors of Haynes alloy 556 are studied and
characterized at elevated temperatures using experimental results and analytical models.
The �-Projection and Garofalo creep models describe the variations of the creep curve
shape at different temperatures and stress levels reasonably well. The �-Projection
method, however, results in accurate prediction of the rupture lives, while Garofalo model
overestimates them. Both models provide fair predictions of minimum creep rate variations
with stress at a given temperature. An incremental time method, which combines the time
independent stress-strain data from standard tensile test with the creep data, is used to
predict the stress-strain curve in slow-strain-rate tensile tests at elevated temperatures.
C© 2002 Kluwer Academic Publishers

Nomenclature
C Power-law breakdown stress
CR Creep rate at any time, t
CRi Initial creep rate
E Modulus of elasticity
K Monotonic strain-hardening coefficient
MCR Minimum creep rate
n Monotonic strain-hardening exponent, or

creep exponent
Q Activation energy for creep
R Universal gas constant
R.T. Room temperature
r Rate constant for creep
t Time
T Temperature
Tt Transition temperature above which the

activation energy is constant
tm Time to minimum creep rate
tR Rupture time
ε Total strain
εe Elastic strain
ε0 Instantaneous strain on loading
εp True plastic strain
εR Rupture strain
εt Limit for the transition creep
�1, �2, Constants of the
�3, �4 �-Projection model
σ True stress
τ Maximum attainable stress rate

∗Author to whom all correspondence should be addressed.

1. Introduction
One of the most critical factors determining the struc-
tural integrity of elevated temperature components is
their creep behavior. Creep at high-temperature can lead
to micro-cracking and ultimate fracture and, therefore,
is one of the main mechanisms that limits the compo-
nent life.

Creep properties are generally determined by means
of a test in which a constant load or stress is applied
to a specimen and the resulting strain is recorded as a
function of time. Fig. 1 shows a typical creep curve. Af-
ter the initial instantaneous strain, a decelerating strain
rate stage (transient primary creep) leads to a steady
minimum creep rate (MCR), which is finally followed
by an accelerating stage (tertiary creep) that ends to
fracture at a rupture time, tR. During primary creep,
the decreasing slope of the creep curve is attributed to
strain hardening. Secondary stage creep is explained in
terms of a balance between strain hardening, softening,
and damage processes, resulting in a nearly constant
creep rate. The tertiary stage is attributed to the appear-
ance of internal or external damage processes coupled
with softening processes, resulting in a decrease in the
resistance to load or a significant increase in the net
sectional stress.

The rupture life, tR, at a given temperature and stress
level is generally obtained when it is necessary to eval-
uate the response of a material for using in short life
situations, such as for rocket engine (tR = 100 sec) or a
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Figure 1 Schematic representation of a typical creep curve.

turbine blade in a military aircraft engine (tR = 100 hrs)
[1]. In such short life situations, the major question is
whether the component will or will not fail, rather than
how much it will deform. As a result, the details of the
creep-time curve are not of central importance to the
engineering problem.

Over the past several decades, a range of methods
have been developed for the prediction and evalua-
tion of creep resistance. The most widely used methods
include constitutive equations and parametric correla-
tions. A typical example of constitutive equations is the
�-Projection method given by:

ε = ε0 + �1
[
1 − e(−�2t)] + �3

[
e(�4t) − 1

]
(1)

where �1, �2, �3, and �4 are constants, which are
functions of stress and temperature, and ε0 is the in-
stantaneous strain on loading. Brown [2] found that
Equation 1 could be used to predict long-term rupture
lives from relatively short time data.

Another model, which is relatively simple and popu-
lar, is the Garofalo model, where the strain-time relation
is given by:

ε = ε0 + εt(1 − e−rt) + (MCR)t (2)

where εt is the limit for transient creep, r is a constant
relating to the rate of exhaustion of the transient creep,
and MCR is the steady state or minimum creep rate.
In this paper, the ability of these models to predict the
variation of the creep curve shape, minimum creep rate,
and the long-term rupture life with varying stress and
temperature is examined and compared with the exper-
imental creep curves and data.

The stress-strain response of a material is often de-
scribed using an equation of the form:

ε = εe + εp = σ

E
+

(
σ

K

)1/n

(3)

where K is strain hardening coefficient, and n is strain-
hardening exponent. Since components are subjected

to different loading rates and operating temperatures,
it is very useful to be able to predict variations of the
stress-strain curve with temperature and strain rate. In
this work, variations of modulus of elasticity, strain
hardening exponent, and strain hardening coefficient
with temperature are also studied based on data from
standard tensile tests. In addition, slow-strain-rate ten-
sile test results at high temperatures are analyzed, since
creep plays an important role in the determination of the
stress-strain response at high temperatures. The stress-
strain curve for the material under investigation at a
given temperature and strain rate, is then predicted us-
ing a time incremental approach which combines time
independent material properties (modulus of elasticity,
strength coefficient, and strain hardening exponent) and
time dependent creep data. The predicted stress-strain
curves are then compared with the experimental curves.

2. Experimental data
Experimental data were obtained for Haynes Alloy 556
at elevated temperature. A piece of two-inch thick mill
annealed plate was used to make the specimens. The
chemical composition of this material is 21 Ni, 18 Co,
22 Cr, 3 Mo, 2.3 W, 0.68 Ta, 0.16 N, 0.4 Si, 1 Mn,
0.15 Al and 0.13 C (all percent by weight), and the bal-
ance is Fe. Mechanical properties of interest including
modulus of elasticity, coefficient of thermal expansion,
yield and ultimate strengths, and percent elongation at
different temperatures are listed in Table I [3]. Both
standard and slow-strain-rate tensile tests as well as
creep tests were performed. The standard tensile and
creep test specimens were 12.70 mm in diameter and
31.75 mm in gage length. The slow-strain-rate tensile
specimens were 6.40 mm in diameter and 50.80 mm
in gage length. Details of experimental procedure are
given in [4]. Fatigue and cyclic performance of this
material have been evaluated previously [5].

Five standard tensile tests were performed at tem-
peratures ranging from room temperature to 900◦C.
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T ABL E I Summary of basic mechanical properties for Haynes alloy 556 [3]

Modulus of Coefficient of 0.2% Yield Ultimate Elongation
Temperature elasticity thermal expansion strength strength in 50.8 mm
(◦C) (GPa) (µm/m/◦C) (MPa) (MPa) (%)

R.T. 205 – 376 803 51.4
93 201 14.7 N/A N/A N/A
204 194 14.9 N/A N/A N/A
316 185 15.1 N/A N/A N/A
427 177 15.4 N/A N/A N/A
538 168 15.7 211 623 60.3
649 159 16.1 211 573 57.4
760 150 16.4 202 472 52.6
871 144 16.7 192 340 69.1
982 139 17.0 128 212 83.9
1093 N/A 17.1 60 111 95.2

T ABL E I I Data from standard tensile tests for Haynes alloy 556 [4]

0.2% Yield Ultimate Reduction Strain Strain hardening
Temperature strength strength Elongation in area hardening coefficient,
(◦C) (MPa) (MPa) (%) (%) exponent, n K (MPa)

R.T. 414 826 57.0 65.8 0.1168 448
300 265 662 54.0 59.9 0.1299 298
760 214 364 92.0 73.4 0.0931 234
800 220 517 52.8 62.2 0.0773 234
900 202 215 96.8 78.3 0.0137 203

T ABL E I I I Slow-strain-rate tensile data [4]

Modulus of 0.2% Yield Flow Strain Strain hardening
Temperature elasticity strength stress hardening coefficient,
(◦C) (GPa) (MPa) (MPa) exponent, n K (MPa)

R.T. 200 367 N/A 0.0870 632
316 200 270 N/A 0.1138 548
593 152 225 N/A 0.1090 444
760 140 220 239 0.0332 267
816 133 143 150 0.0229 166
871 111 98.9 104 0.0374 126

T ABL E IV Creep data at various temperatures [4]

Temperature Stress MCR Time to 1% Rupture Elongation, Reduction in
(◦C) (MPa) (%/hr) creep (hrs) life (hrs) (%) area (%)

800 40 5.16 × 10−3 >10,000 N/A N/A N/A
800 70 5.59 × 10−4 1,400 10,652 25.36 31.56
800 100 4.36 × 10−3 1,500 1,035 43.68 53.39
871 40 7.39 × 10−5 9,500 N/A N/A N/A
760 100 9.03 × 10−4 400 5,755 21.44 29.51

Typical data from these tests are listed in Table II. Slow-
strain-rate tensile tests were also run for temperatures
ranging from room temperature to 871◦C at a strain rate
of 0.5%/hour. Data collected from the slow-strain-rate
tensile tests are listed in Table III. Creep tests were run
in a lever-arm creep-testing machine at temperatures
ranging from 760◦C to 871◦C. Data from these tests
are listed in Table IV.

3. Creep behavior
3.1. �-Projection Method
The changes in the creep curve shape with stress and
temperature can be described using Equation 1 [6, 7].

Creep rate is determined by differentiating this equation
with respect to time:

dε

dt
= �1�2e(−�2t) + �3�4e(�4t) (4)

The first term of the creep rate decreases with time,
which is attributed to strain hardening. The second term
increases with time, which is attributed to strain soft-
ening and damage processes. Equation 1 is based on
the concept that two relaxation-type processes, strain
hardening (the second term) and strain weakening (the
third term), proceed independently during creep, and
that a steady-state does not exist in creep of practical
materials [6].
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Figure 2 The stress dependence of the � constants for the Haynes alloy 556 at 800◦C.

The time at which creep rate is minimum is obtained
by differentiating Equation 4 with respect to time and
setting it equal to zero. The time to minimum creep rate
is then found to be:

tm = 1

�2 + �4
ln

�1(�2)2

�3(�4)2
(5)

The four � constants are determined using a non-
linear optimization technique which applies the least
squares method to the creep equation. The values of
the four � constants obtained are based on lives rang-
ing from 800 to 5000 hours and their variations with
stress level are shown in Fig. 2. This figure suggests
linear dependence on stress level in semi-log coordi-
nates. Variation of � values with temperature at con-
stant stress could not be obtained based on the available
creep data, since only two data points were available at
a given stress level. However, analysis of several other
materials including 1/2CrMoV, 1CrMoV, 9CrMoVNb,
and 12CrMoVNb steels [8] showed that the variations
of log(�i ) with temperature at a constant stress exhibit
a linear trend. Accordingly, it is assumed that log(�i )
varies linearly with stress at a constant temperature, and
with temperature at a constant stress level. This can be
mathematically represented by an equation of the form:

log(�i ) = ai + bi T + ciσ + diσ T (6)

where ai , bi , ci , and di are constants determined by the
least squares method for each �. Fig. 3 shows superim-
posed plots of experimental and predicted creep curves
by the �-Projection model (Equation 1). The model

T ABL E V Rupture lives as predicted by the �-Projection and Garofalo models versus experimental rupture lives

�-Projection model Garofalo model

Stress Temperature Experimental Predicted Predicted to Predicted Predicted to
(MPa) (◦C) rupture life (hrs) rupture life (hrs) experimental rupture life (hrs) experimental

100 760 5,755 5,698 0.99 14,300 2.48
70 800 10,652 14,209 1.33 55,500 5.21
100 800 1,500 1,659 1.11 13,825 9.22

fits the experimental results reasonably well within the
experimental range.

To examine the ability of the �-Projection method
to predict long term creep performance from short term
data, the rupture lives were calculated using Equation 1
and compared with the experimental rupture lives avail-
able for lives up to 10,652 hours. The available ex-
perimental rupture strains are given in Table IV as a
function of stress and temperature. Using Equation 1,
with ε0 = 0 and ε =εr, where εr is the rupture strain, a
numerical solution for the rupture life can then be ob-
tained with results shown in Table V. As can be seen,
this method gives a fairly good prediction of rupture
lives when compared to experimental long-term data
of the Haynes alloy 556, but somewhat overestimating
the long-term creep performance. Using Equations 4–6
in conjunction with the values of the constants a, b,
c, and d, the minimum creep rate for stress levels be-
tween 20 MPa and 100 MPa at 800◦C were predicted
and compared with experimental minimum creep rates
in Fig. 4.

3.2. Garofalo model
According to this model, creep curve is represented by
the strain-time relation in Equation 1. A relation, which
describes the stress dependence of the minimum creep
rate at a given temperature, can be described by [9]:

MCR = A1Sinhn(ασ ) (7)

where A1, n, and α are constants. Since creep is a
thermally activated process, its temperature sensitivity
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Figure 3 Experimental and predicted creep curves by �-Projection and Garofalo models at different temperatures and stress levels.

obeys an Arrhenius-type expression. With characteris-
tic activation energy, Q, for the rate controlling mech-
anism, the creep rate can be expressed by:

MCR = A2e−Q/RT (8)

where A2 is a constant and R is the universal gas con-
stant. Combining Equation 7 with Equation 8 results in
[10]:

MCR = Ae−Q/RT Sinhn(ασ ) (9)

The values of εt, r , and MCR for the creep tests are
obtained from the least squares fit of the experimental

data to Equation 2. By differentiating Equation 2 with
respect to time, one obtains:

CR = εtre(−r t) + MCR (10)

where CR is the creep rate at any time t . The initial
creep rate, C Ri , at t = 0 becomes:

CRi = εtr + MCR (11)

A plot of calculated initial creep rate versus calculated
minimum creep rate indicates a linear relationship given
by:

CRi = 0.0044 + 23 MCR (12)
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Figure 4 Experimental and predicted minimum creep rate by
�-Projection and Garofalo models as a function of stress at 800◦C.

Solving Equations 11 and 12 for εtr , and substituting
into Equation 10, the creep rate, CR, is then found.

Variation of the creep rate constant, r , with MCR was
also found to be generally linear with MCR within the
investigated experimental range, expressed as:

r = 0.02 + 80 MCR (13)

Upon substituting r in the CR equation and then inte-
grating, the total creep strain is found to be:

ε = 1

r

[
1 − e(−r t)](0.0044 + 22 MCR) + (MCR)t + ε0

(14)

where ε0 is the instantaneous strain on loading which
is zero for the creep tests of Haynes alloy 556.

According to Garofalo [10], for low stress levels
Equation 7 reduces to:

MCR = A3σ
n (15)

where A3 and n are constants for a given temperature.
Therefore, for the investigated experimental range,
Equation 9 reduces to:

MCR = Aσ ne−Q/RT (16)

The constants n, Q/R and A were found by least
squares fit of the experimental data, resulting in:

MCR = 1.18 × 10−5σ 5.432e−20,850/T (17)

The experimental and calculated minimum creep rate
data by Garofalo model versus stress and tempera-
ture are also listed in Table V. The creep curves can
be constructed for the various stress and temperature
conditions by using Equations 13, 14 and 17. Fig. 4
also shows predicted creep curves based on Garofalo
model for stresses ranging from 40 MPa to 100 MPa,
and temperatures between 760◦C and 871◦C.

3.3. Comparison of models
with experimental results

The �-Projection method results in better predictions
of rupture lives for the available experimental data, as
indicated by ratios of predicted to experimental rup-
ture lives listed in Table V. The predicted minimum

creep rates based on the two models considered, are
compared with the measured minimum creep rates at
800◦C in Fig. 4. Either of the two models can be
used to describe the minimum creep rate over the ex-
perimental stress range, reasonably well. Evans and
Wilshire [6] examined minimum creep rate dependence
on stress for 1/2Cr1/2Mo1/4V steel at 838◦C. The pre-
dicted minimum creep rate dependence on stress for
this steel was based on tests carried out at very low
stresses using �-Projection method. The extrapolated
measured rates were very close to the experimental
data. In addition, the �-Projection method predicted
the exact curvature of the experimentally determined
log (σ )/log(MCR) relationship observed in tests of long
duration.

Fig. 3 shows the predicted creep curves based on each
model superimposed with the experimental curves. As
can be seen, the �-Projection method gives the best fit
and representation of the experimental curves. More-
over, the �-Projection method provides a concise and
convenient means of quantifying the entire creep char-
acteristics of the alloy in a manner which describes
the variation in creep curve with changes in stress
and temperature within the experimental range. The
relative extent of the primary creep stage diminishes,
while the tertiary stage becomes more pronounced with
decreasing stress and temperature, as predicted by the
two models considered. It should also be noted that
the MCR occurs at a progressively earlier fraction of the
total life, as the stress and temperature are decreased.

The decrease in the creep exponent, n, from high
values at high stresses to low values at low stresses,
is usually explained by the assumption of changes in
the creep mechanism. The �-Projection method gives
an accurate prediction of the decrease in the slope of
log(σ )/log(MCR) relation on the basis of changes in
creep curve shape, rather than changes in the creep
mechanism with stress, since creep characteristics can
be interpreted directly from the stress and tempera-
ture dependence of �i constants. It should, however,
be noted that as a function of temperature, the creep
mechanism changes from obstacle-controlled disloca-
tion glide at low and intermediate temperatures, to dis-
location climb mechanism at higher temperatures [11].

The �-Projection method, when applied to predict
the long-term creep performance, fits the primary stage
very well. Some divergence from the experimental
curve is seen after the point of minimum creep rate
is reached, as can be seen from Fig. 3. The creep strain
calculated by the �-Projection method consists of pri-
mary and tertiary creep strains. The primary strain rate
diminishes with time, while the tertiary strain rate be-
comes more pronounced. Therefore, immediately after
reaching the point of minimum creep rate, the net strain
rate increases more rapidly without showing any region
of secondary creep rate. This can explain the increase
in divergence of the predicted and experimental curves
with time, as seen in Fig. 3.

The lack of accuracy in Garofalo model in fitting
the shape of the creep curve and predicting rupture
lives is due to the fact that the model does not take
into consideration the transient part of the creep curve.
Therefore, predicted rupture life is much longer than
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the experimental life, especially for long life situations.
This model is good to be used for short life situations
to calculate rupture lives.

4. Monotonic stress-strain behavior
Materials strength properties needed for calculating the
allowable stresses and deflections are usually deter-
mined from stress-strain curves. Based on the time in-
dependent stress-strain data at room temperature and
the creep data, the stress-strain curve at different tem-
peratures and strain rates can be obtained. For the ma-
terial investigated, first the variations of modulus of
elasticity, strain hardening exponent, and strain harden-
ing coefficient with temperature are determined. Using
this information, the stress-strain curve could be ob-
tained with varying temperatures, but at a fixed strain
rate. The stress-strain curves at slow-strain-rate are then
constructed by combining the time independent stress-
strain data with the time dependent creep rate data, us-
ing a time incremental method.

4.1. Standard tensile tests
Data from five standard tensile tests at high tem-
peratures were available [4]. Typical data from these
tests are given in Table II. A Holloman type equation
(Equation 3) is used to predict the stress-strain behavior
for a given temperature.

As can be seen from Fig. 5, modulus of elasticity of
Haynes alloy 556 varies linearly with temperature, and
can be expressed by:

E = 203 − 0.073T (18)

where T is the temperature in ◦C, and E is in GPa. This
figure shows that modulus of elasticity decreases from
201 GPa at room temperature to 138 GPa at 900◦C.
This is due to the fact that the separation distance be-
tween atoms increases with temperature due to expan-
sion from heating.

Figure 5 Temperature dependence of modulus of elasticity from stan-
dard tensile tests.

The strain hardening exponent is defined as a measure
of the increase in strength of the material due to plas-
tic deformation. Smith [12] determined the variations
of the strain hardening exponent with temperature for
several materials including alloy steels, copper and pure
iron. For copper, he found that the strain hardening ex-
ponent decreases linearly with temperature for temper-
atures between 0◦C and 500◦C. For alloy 304 steel, the
strain-hardening exponent also decreases slowly with
temperature up to 600◦C, and then it decreases rapidly
with temperature after 600◦C. For pure iron, the strain
hardening exponent increases linearly with a slow rate
until 400◦C, then it decreases very rapidly after reach-
ing a peak at 400◦C. Therefore, there is no defined trend
for the variation of the strain hardening exponent with
temperature and the relationship varies from one mate-
rial to another.

Plots of strain hardening exponent, n, and the strength
coefficient, K , for the Haynes alloy 556 as a function
of temperature are shown in Fig. 6. As can be seen
in Fig. 6a, the strain hardening exponent, n, increases
gradually with temperature until reaching a maximum
at around 300◦C, then it decreases after 300◦C. This
type of variation can be represented using a parabolic
equation, the constants of which were determined by
least squares fit as follows:

n = 0.1058 + 2.3 × 10−4T − 3.5 × 10−7T 2 (19)

The strength coefficient, K , variation with temperature
is modeled linearly, as shown in Fig. 6b. The strength
coefficient changes with temperature in the same man-
ner as the yield and ultimate strengths. As the temper-
ature increases, the material becomes more ductile and
the stress required to attain 100% true strain becomes
smaller. A regression line through the experimental data
in Fig. 6b gives:

K = 422 − 0.248T (20)

where K is in MPa.
Fig. 7 shows a plot of experimental and predicted

standard stress-strain curves based on Equations 3 and
18–20 for temperatures between room temperature and
900◦C. As can be seen, the predictions are reasonable,
particularly in the plastic strain dominated regime.

4.2. Slow-strain rate tensile
response predictions

Slow-strain-rate tensile tests are used to predict
the stress-strain response of Haynes alloy 556 at
slow-strain-rates. Data from these tests, as listed in
Table III, are used as an evaluation of how well the
stress-strain response can be predicted using time-
dependant tensile curves and time dependent minimum
creep data.

An incremental time method was used to predict the
stress-strain curves at a strain rate of 0.5%/hour, since
experimental data for Haynes alloy 556 was available at
this strain rate. For each time increment, the stress was
assumed to be constant. The strain decrement due to
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Figure 6 Temperature dependence of strain hardening exponent and coefficient.

Figure 7 Tensile stress-strain curves for various temperatures showing experimental data versus curves derived from the empirical model.

creep is computed by multiplying the minimum creep
rate at a given stress and temperature by the time incre-
ment. Then, the net strain is incremental strain minus
the creep strain. The stress increment was determined
by multiplying the net strain increment by the secant
modulus. The secant modulus is calculated at the same
stress used to calculate the creep strain decrement by
taking the derivative of Equation 3 with respect to
stress, σ . Marching on time while summing the stress
and strain increments, the stress-strain curves are then
constructed.

Fig. 8 shows the experimental and predicted stress-
strain curves at a strain rate of 0.5% for temperatures
of 23◦C, 316◦C, 760◦C and 871◦C. The curve is un-

derestimated at room temperature. At this tempera-
ture, the stress decrement due to creep is the major
factor in underestimating the calculated stress due to
the fact that at room temperature the material strain
hardened the most. Therefore, to gain more accuracy
at room temperature, the creep effect can be neglected.
At 316◦C and 760◦C, there is a reasonably good agree-
ment between the experimental and calculated stress-
strain curves, since there is a balance between the hard-
ening and relaxation processes. On the other hand, at
871◦C the predicted curve is overestimated, since the
balance between hardening and relaxation processes
is shifted toward more relaxation. Therefore, at high
temperatures (871◦C), to predict the curves with more
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Figure 8 Experimental and predicted stress-strain response based on the time incremental method at a slow-strain-rate of 0.5%/hour.

accuracy, another stress decrement is needed to account
for relaxation. To accomplish this task, more relaxation
experiments are needed at various temperatures.

5. Conclusions
Based on the analysis and discussion of the experimen-
tal data and models presented, the following conclu-
sions can be made:

1. For the Haynes alloy 556 investigated, the strain-
time curve at any stress and temperature within the
ranges studied can be constructed using either the
�-Projection or the Garofalo model. The �-Projection
model for creep deformation predicts the variation in
creep curve curvature as a function of temperature
and stress level reasonably well. Moreover, this model
gives more accurate prediction for the rupture life than
Garofalo model within the experimental range.

2. Both �-Projection and Garofalo creep models can
reasonably predict the minimum creep rate as a func-
tion of stress for a given temperature. However, the
creep exponent, n, does not vary with stress for a given
temperature according to Garofalo model, but rather,
it decreases from high values at high stresses to low
values at low stresses according to the �-Projection
model.

3. Modulus of elasticity of Haynes alloy 556 de-
creases linearly as the temperature increases in the
range of experimental data. The strain hardening expo-
nent varies parabolically with temperature, while the
strain hardening coefficient decreases rather linearly
with temperature in the range of experimental data.

4. The stress-strain prediction model based on the
incremental time method gives reasonable predictions
at intermediate temperatures (316◦C and 760◦C). The
stress-strain curves are underestimated at room temper-
ature, and overestimated at the highest test temperature
(871◦C).

Acknowledgements
The data used in this work were generated at the
Oak Ridge National Laboratory (ORNL) by T. H.
Krukemyer during his graduate studies at the Univer-
sity of Toledo. Appreciation is expressed to R. W.
Swindeman of the Metals and Ceramics Division at
ORNL for managing this activity.

References
1. R . V I S W A N A T H A N , “Damage Mechanisms and Life Assess-

ment of High Temperature Components” (ASM International,
Metals Park, Ohio, 1989).

2. S . G . R . B R O W N , in Proceedings of the Third International
Conference on Creep and Fracture of Engineering Materials and
Structures, 1987, p. 829.

3. Haynes International, “Haynes Alloy No. 556,” Catalog No. H 3013,
Kokomo, IN, 1986.

4. T . H . K R U K E M Y E R , Master thesis, Department of Mechanical
Engineering, The University of Toledo, Toledo, Ohio, August 1991.

5. T . H . K R U K E M Y E R , A. F A T E M I and R. W. S W I N D E M A N

ASME Journal of Engineering Materials and Technology 116 (1994)
54.

6. R . W. E V A N S and B. WILSHIRE, “Creep of Metals and Alloys,”
The Institute of Metals, London, 1985 p. 197.

7. K . M A R U Y A M A and H. O I K A W A , in International Creep Con-
ference, 1987, p. 815.

8. R . V I S W A N A T H A N , Metallurgical Transactions 8A (1977)
877.

9. F . G A R O F A L O , “Fundamentals of Creep and Creep-Rupture in
Metals” (McMillan Company, New York, 1965) p. 46.

10. Idem., Transactions of the Metallurgical Society of AIME 227
(1963) 351.

11. A . D . F R E E D , S . V . R A J and K. P . W A L K E R , ASME Jour-
nal of Engineering Materials and Technology 114 (1992) 46.

12. G . V . S M I T H , “The Application of Elevated Temperature Yield
Strength and Code Allowable Stresses” (The American Society of
Engineers, New York, 1974) p. 157.

Received 30 July 2001
and accepted 27 March 2002

2907


